Evolution of the dynamic changes in functional cerebral oxidative metabolism from tissue mitochondria to blood oxygen.

نویسندگان

  • Alberto L Vazquez
  • Mitsuhiro Fukuda
  • Seong-Gi Kim
چکیده

The dynamic properties of the cerebral metabolic rate of oxygen consumption (CMR(O2)) during changes in brain activity remain unclear. Therefore, the spatial and temporal evolution of functional increases in CMR(O2) was investigated in the rat somato-sensory cortex during forelimb stimulation under a suppressed blood flow response condition. Temporally, stimulation elicited a fast increase in tissue mitochondria CMR(O2) described by a time constant of ~1 second measured using flavoprotein autofluorescence imaging. CMR(O2)-driven changes in the tissue oxygen tension measured using an oxygen electrode and blood oxygenation measured using optical imaging of intrinsic signal followed; however, these changes were slow with time constants of ~5 and ~10 seconds, respectively. This slow change in CMR(O2)-driven blood oxygenation partly explains the commonly observed post-stimulus blood oxygen level-dependent (BOLD) undershoot. Spatially, the changes in mitochondria CMR(O2) were similar to the changes in blood oxygenation. Finally, the increases in CMR(O2) were well correlated with the evoked multi-unit spiking activity. These findings show that dynamic CMR(O2) calculations made using only blood oxygenation data (e.g., BOLD functional magnetic resonance imaging (fMRI)) do not directly reflect the temporal changes in the tissue's mitochondria metabolic rate; however, the findings presented can bridge the gap between the changes in cellular oxidative rate and blood oxygenation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cerebral Oxygen Delivery and Consumption During Evoked Neural Activity

Increases in neural activity evoke increases in the delivery and consumption of oxygen. Beyond observations of cerebral tissue and blood oxygen, the role and properties of cerebral oxygen delivery and consumption during changes in brain function are not well understood. This work overviews the current knowledge of functional oxygen delivery and consumption and introduces recent and preliminary ...

متن کامل

Vulnerability of Prepubertal Mice Testis to Iron Induced Oxidative Dysfunctions In Vivo and Functional Implications

Background The present study describes the susceptibility of prepubertal testis of mice to prooxidant induced oxidative impairments both under in vitro and in vivo exposure conditions. MaterialsAndMethods Following in vitro exposure to iron (5,10 and 25 M), oxidative response measured in terms of lipid peroxidation and hydroperoxide levels in testis of pre pubertal mice (4 wk) was more robust c...

متن کامل

Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain.

It is puzzling that hydrogen-rich fatty acids are used only poorly as fuel in the brain. The long-standing belief that a slow passage of fatty acids across the blood-brain barrier might be the reason. However, this has been corrected by experimental results. Otherwise, accumulated nonesterified fatty acids or their activated derivatives could exert detrimental activities on mitochondria, which ...

متن کامل

O-21: Differential Expression and Epigenetic Pattern of HOX Family Genes in Cumulus Cells of Mature MII Oocytes from Patients with Polycystic Ovary Syndrome

Background Ovarian tissue cryopreservation represents a promising strategy to preserve the ovarian function in cancer patients. It is usually performed by slow freezing/rapid thawing (SF/RT). Recent studies emphasize an ultrarapid cryopreservation procedure, vitrification/warming (V/W), since it might prevent damages due to ice crystal formation. Comparative studies between the cryopreservation...

متن کامل

Propofol Attenuates Toxic Oxidative Stress by CCl4 in Liver Mitochondria and Blood in Rat

Anti-oxidant effects of propofol (2, 6-diisopropylphenol) were evaluated agains carbon tetrachloridet CCl4 -induced oxidative stress in rat liver. 30 male rats were equally divided in to 6 groups (5 rats each). Group I (control), while Group II was given CCl4 (3 mL /Kg/day, IP). Animals of Groups III received only propofol (10 mg/Kg/day, IP). Group IV was given propofol+ CCl4. Group V was admin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism

دوره 32 4  شماره 

صفحات  -

تاریخ انتشار 2012